Unit 7C Molarity
Name:

Molarity: a \qquad description of solution concentration

Molarity Abbreviated: \qquad
Molarity $=$

Show all work and circle your final answer.

1. To make a 4.00 M solution, how many moles of solute will be needed if $\mathbf{1 2 . 0}$ liters of solution are required?
2. How many moles of sucrose are dissolved in $\mathbf{2 5 0} \mathbf{~ m L}$ of solution if the solution concentration is $\mathbf{0 . 1 5 0} \mathbf{M}$?
3. What is the molarity of a solution of HNO_{3} that contains 12.6 grams HNO_{3} in 1.0 L of solution?
4. How many grams of potassium nitrate are required to prepare 0.250 L of a 0.700 M solution?

Unit 7C Molarity
Name:
Practice Problems I

Show all work and circle your final answer.

5. $125 \mathrm{~cm}^{3}$ of solution contains 3.5 moles of solute. What is the molarity of the solution?
6. Which solution is more concentrated? Solution "A" contains 50.0 g of CaCO_{3} in 500.0 mL of solution. Solution "B" contains 6.0 moles of $\mathrm{H}_{2} \mathrm{SO}_{4}$ in 4.0 L of solution. SHOW WORK!
7. How many liters of solution can be produced from 2.5 moles of solute if a 2.0 M solution is needed?
8. What would be the concentration of a solution formed when 1.00 g of NaCl are dissolved in water to make 100.0 mL of solution?
