Work each of the following problems. SHOW ALL WORK.

1. A sports car accelerates from rest to $26.8 \mathrm{~m} / \mathrm{s}$ (roughly $60 \mathrm{mi} / \mathrm{h}$) in 5.1 seconds. What is the acceleration of the car?
2. A child goes down a slide, starting from rest. If the length of the slide is $\mathbf{2} \mathbf{m}$ and it takes the child $\mathbf{3}$ seconds to go down the slide, what is the child's acceleration?
3. How far does a sled travel in $\mathbf{5}$ seconds while accelerating from $\mathbf{4} \mathbf{~ m} / \mathrm{s}$ to $10 \mathrm{~m} / \mathrm{s}$?
4. A fighter jet is catapulted off an aircraft carrier from rest to $\mathbf{7 5} \mathbf{~ m} / \mathrm{s}$. If the aircraft carrier deck is 100 m long, what is the acceleration of the jet?

Work each of the following problems. SHOW ALL WORK.

5. A driver notices an upcoming speed limit change from $45 \mathrm{mi} / \mathrm{h}(\mathbf{2 0 ~ m} / \mathrm{s})$ to $\mathbf{2 5 ~ m i} / \mathrm{h}(\mathbf{1 1 ~ m} / \mathrm{s})$. If she estimates the speed limit will change in 50 m , what acceleration is needed to reach the new speed limit before it begins?
6. One minute after takeoff, a rocket carrying the space shuttle into outer space reaches a speed of $447 \mathrm{~m} / \mathrm{s}$. What was the average acceleration of the rocket during that initial minute?
7. A sprinter accelerates from rest to a velocity of $12 \mathrm{~m} / \mathrm{s}$ in the first $\mathbf{6}$ seconds of the 100-meter dash.
a. How far does the sprinter travel during the first $\mathbf{6}$ seconds?
b. How much farther does the sprinter have to travel to reach the finish line?

Acceleration and Kinematic Equations

Work each of the following problems. SHOW ALL WORK.

c. If the sprinter travels at a constant velocity of $12 \mathrm{~m} / \mathrm{s}$ for the last $\mathbf{6 4} \mathbf{~ m}$, how long will it take to reach the finish line?
8. The school zone in front of your school has a posted speed limit of $25 \mathrm{mi} / \mathrm{h}$, which is about $11 \mathrm{~m} / \mathrm{s}$. Let's examine the stopping of a car in several different situations.
a. The crossing guard holds up her stop sign, and the driver is paying attention well. The car moves at a constant velocity of $11 \mathrm{~m} / \mathrm{s}$ for 2.3 seconds while the driver reacts, then slows down at a constant rate of $-4.5 \mathrm{~m} / \mathbf{s}^{2}$. What is the stopping distance for the car in this situation?

Acceleration and Kinematic Equations
Practice Problems

Name:

Date:

Work each of the following problems. SHOW ALL WORK.
b. A child appears to be running into the street ahead. It takes 2.3 seconds for the driver to react and begin to brake, but this time at a rate of $-7.5 \mathrm{~m} / \mathrm{s}^{2}$. What is the stopping distance for the car in this situation?
c. The driver is looking at her phone and has a total reaction time of 4.6 seconds as the car is moving at a constant speed of $11 \mathrm{~m} / \mathrm{s}$. If the driver slams on her brakes and slows down at a rate of $\mathbf{- 8 . 2} \mathbf{~ m} / \mathrm{s}^{\mathbf{2}}$, what is the stopping distance for the car in this situation?

